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DIS) as the initial condition, the correlation in the transverse plane induced by the leading

order BFKL evolution is generally strong, resulting in a violation of the mean field approx-

imation T (2) ≈ TT even at zero impact parameter by a factor ranging from 1.5 to O(10)

depending on the relative size of the scatterers and rapidity. This suggests that, within

the experimentally accessible energy interval, the transverse correlation can significantly

affect the nonlinear evolution of the dipole scattering amplitude. It also suggests that the

nonlinear effects may set in earlier, already in the weak scattering regime. In the case of

the simulation with a running coupling, the violation of factorization is somewhat milder,

but still noticeable.
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1. Introduction

High energy scattering near the unitarity limit is a delicate problem which deserves intense

theoretical efforts in view of its phenomenological importance at hadron colliders. There is

a clear goal of including nonlinear, saturation effects due to the high density of gluons into

the energy evolution of scattering amplitudes, but a precise determination of when and

how these effects should be treated is subject to various uncertainties depending on the

process of interest. The problem appears to somewhat simplify if one considers scattering

of a small object (e.g., a photon at high virtuality in DIS) off a very heavy nucleus where

saturation is important already at relatively low energy. For such a process the Balitsky-

Kovchegov (BK) equation [1, 2] is the most commonly studied equation which provides a

concrete scenario for an approach towards unitarity,

∂Y TY (x, y) =
ᾱs

2π

∫

d2zM(x, y, z) ×

×

{

−TY (x, y) + TY (x, z) + TY (z, y) − TY (x, z)TY (z, y)

}

,

M(x, y, z) ≡
(x− y)2

(x− z)2(z − y)2
, ᾱs ≡

αsNc

π
. (1.1)

Here TY (x, y) is the forward amplitude of a dipole of size |x − y| at rapidity Y . The first

three terms on the right hand side contain the BFKL physics [3, 4] while the last term

∼ TT ensures that the amplitude saturates the black disc limit T → 1 which is a fixed
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point of the equation. Being a closed equation, (1.1) is amenable to both analytical and

numerical approaches, and the properties of the solution as well as their phenomenological

consequences have been discussed extensively over the past several years (see, reviews [5, 6]

and references therein).

However, it is not often emphasized that the BK equation is a mean field approximation

to a more general equation, namely, the B-JIMWLK equation [1, 7 – 10]

∂Y TY (x, y) =
ᾱs

2π

∫

d2zM(x, y, z)×

×

{

−TY (x, y) + TY (x, z) + TY (z, y) − 〈TY (x, z)TY (z, y)〉

}

, (1.2)

nor is the validity of this approximation fully appreciated. Here the brackets 〈. . . 〉 denote

averaging over the target configurations. The difference between these two equations is

usually considered to be minor: Although the former obviously discards any kind of ex-

isting correlations in the target wavefunction, this would be justified for a large nucleus

at low rapidity (see, however, [11]). The subsequent quantum evolution then generates

correlations which vanish in the large Nc limit,

〈TT 〉 ≈ 〈T 〉〈T 〉 + O

(

1

N2
c

)

. (1.3)

Indeed, the only existing numerical simulation of the B-JIMWLK equation [12] starting

from uncorrelated initial conditions shows little difference from the corresponding solution

to the BK equation.

The purpose of this work is to demonstrate that the factorization (1.3) is violated

when one considers a dilute target consisting of a few partons (e.g., a proton) instead of a

heavy nucleus as the initial condition. Of course, there is a priori no reason to expect that

factorization should work in this case, but there has not been any quantitative study of the

degree of its violation either. For a dilute target, a significant part of the rapidity evolution

in realistic experiments is in the linear BFKL regime where the amplitude is rapidly growing

but still much less than unity, whereas saturation is considered to be relevant only in the late

stages of the evolution.1 The fluctuations and correlations developed in the linear regime

are so strong that the initial condition that should be used for the nonlinear evolution

equations is a highly nontrivial system of gluons for which the difference between (1.1)

and (1.2) may turn out to be crucial, especially for phenomenology. Specifically, in the

framework of the QCD dipole model ref. [13] found a power-law correlation in the double

scattering amplitude2

〈T (x, z)T (w, y)〉 ∝
1

|z −w|γ
, (1.4)

under the condition that the distance between the two dipoles are much larger than their

sizes, |z − w| ≫ |x − z|, |w − y|. (γ is a positive, calculable number related to the

1However, we have found some evidence that nonlinear effects might set in earlier due to the correlation.

See the discussion in section 3.2.
2See also [14], though there seem to be disagreements in the results.
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anomalous dimension.) In the exemplary cases studied in [13], this power-law always leads

to a parametrically large ratio

R ≡
〈T (x, z)T (w, y)〉

〈T (x, z)〉〈T (w, y)〉
≫ 1 . (1.5)

Due to a technical reason, in [13] it was not possible to take the interesting limit w → z

to evaluate R for the ‘BK configuration’, although it was tantalizing to conclude from (1.4)

that that the correlation would become even larger in this case. Here we circumvent this

difficulty and present an analytical insight into the behavior of R as a function of the initial

dipole sizes.

However, analytical calculations are often quite difficult, and one can usually only deal

with special configurations which are set by hand. Besides, for our purpose it is important

to know the actual numerical value of T and 〈T 2〉 to make sure that one evaluates R in

a regime where the nonlinear corrections just start to be important. We will therefore

also perform a Monte Carlo (MC) simulation of the QCD dipole model [15] which contains

the exact leading order BFKL dynamics. In this framework one generates a cascade of

dipoles keeping track of their sizes and positions in the transverse plane. Calculations of

〈T k〉 for any k, hence R, are completely straightforward for arbitrary configurations. We

then compare the numerical results with analytic expectations and find that they agree

satisfactorily. For zero impact parameter we find that R is much larger than 1 when the

ratio of the projectile and target sizes is either small or large. The minimum value for R is

attained when the projectile and target are of similar size, and in this case the value of R

is around 1.5. This suggests that, in the leading logarithmic approximation on which both

the BK equation and the dipole model are based, the replacement 〈TT 〉 → 〈T 〉2 is not

valid for a proton target especially for a small dipole projectile (or in the high–Q2 region

of DIS), although it might be safe to do so for a nucleus target. In the former case one

should rather use the B-JIMWLK equation with a strongly correlated initial condition,

whose asymptotic solution can be different from that of the BK equation.

The fact that one finds large correlations in the leading order evolution for a dilute

system is consistent with the early studies on fluctuations in [16, 17]. In [16] it was found

that 〈T k〉 ∼ (k!)2 (or rather 〈T k〉 ∼ k! · (k + 3)!) at zero impact parameter. This implies

that, for any m ≤ k,

〈T k〉

〈T k−m〉〈Tm〉
∼

(

k!

(k −m)!m!

)2

=

(

k

m

)2

≫ 1. (1.6)

Note, however, that the definition of 〈T k〉 in (1.6) is different from the one considered in

this paper, namely, 〈T k〉 appearing in the Balitsky hierarchy whose first equation is (1.2).

In (1.6), one evolves the target and the projectile up to some energy, and then calculate the

sum of all events in which there are k simultaneous interactions. In our case we rather fix

k given dipoles in the transverse plane, and then consider their scattering off some target.

Only the latter contains information of the correlation resolved in the transverse plane.

In [18 – 20] the dipole model has been modified and extended to include various non-

leading effects as well as saturation and confinement effects during the evolution. Generally
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speaking, these effects tend to reduce the correlation. For example, 〈T k〉 as defined in [16]

behaves as (for k between 5 and 9) 〈T k〉/〈T k−1〉 ≈ 1.2 · k once the nonleading effects are

included [20]. This implies

〈T k〉

〈T k−m〉〈Tm〉
∼

(

k

m

)

, (1.7)

and thus the correlation is reduced with respect to (1.6). It should, however, be said that

the fluctuations are still very important, and they have for example important consequences

on the study of elastic and diffractive scattering in DIS and pp collisions [20]. In this paper

we only show some of the preliminary numerical results with the running coupling effect to

see if there is a similar suppression of the correlation, while a detailed study of the various

additional effects is postponed to a future publication.

The paper is organized as follows. In the next section we present analytical calcula-

tions of the double dipole scattering amplitude and the ratio R for the BK configurations

mentioned above. In section 3.1 we outline our numerical approach to the calculation of

the correlation. The results, including the running coupling case, are then presented in

section 3.2 where we also make comparison with the analytical expectations. Finally, in

section 4 we summarize our results and raise some open questions.

2. Analytical approach

2.1 The dipole pair density

In the dipole model [15], the degree of the two-body correlation in impact parameter space

is encoded in the dipole pair density [21, 22] whose integral representation reads (keeping

only the zero conformal spin sector) [23, 24]

n
(2)
Y (x01, xa0a1

, xb0b1) =

∫

dγdγadγb
1

2x2
a0a1

x2
b0b1

∫ Y

0
dy eχ(γ)y+(χ(γa)+χ(γb))(Y −y)

×

∫

d2xαd
2xβd

2xγE
γ(x0γ , x1γ)Eγa(xa0α, xa1α)Eγb(xb0β, xb1β)

×

∫

d2x2d
2x3d

2x4

x2
23x

2
34x

2
42

E1−γ(x2γ , x3γ)E1−γa(x2α, x4α)E1−γb(x3β , x4β)

(2.1)

where x01 = x0 − x1 denotes the coordinate of the parent dipole, and xa0a1
= xa0

− xa1

and xb0b1 = xb0 − xb1 are those of the child dipoles (see, figure 1). We shall use the letter

x for both two-dimensional real vectors and their magnitude. χ is the BFKL eigenvalue

χ(γ) = ᾱs

(

2ψ(1) − ψ(γ) − ψ(1 − γ)
)

, (2.2)

with γ being the anomalous dimension, and E is the eigenfunction of the SL(2,C) group

Eγ(x0γ , x1γ) =

(

x01

x0γx1γ

)2γ

. (2.3)
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Figure 1: A graphical representation of equation (2.1).

The γ-integrals are along the imaginary axis. With the usual representation γ = 1
2 + iν, it

reads
∫

dγ ≡

∫ ∞

−∞

dν
2ν2

π4
. (2.4)

In ref. [13], the multi-dimensional integral in (2.1) has been carried out in the limit

xab = xa − xb ≡
xa0

+ xa1

2
−
xb0 + xb1

2
≫ xa0a1

, xb0b1 . (2.5)

The result shows a power-law correlation between the two child dipoles. In the case of

x01 ≫ xab, ref. [13] found

n(2) ∼

(

x01

xab

)2(2γa−γ)

(n)2 , (2.6)

where n is the single dipole density, and γa and γ are the saddle point values determined

from certain conditions. The breakdown of factorization is carried over to that of the

two-dipole scattering amplitude

T (2)(xa0a1
, xb0b1) ∼

(

x01

xab

)2(2γa−γ)

T (xa0a1
)T (xb0b1) ≫ T (xa0a1

)T (xb0b1) , (2.7)

as already noted in the introduction. (From now on we use the notation T (2) in place

of 〈T 2〉.) On the other hand, the quantity of interest for us is the two dipole scattering

amplitude for contiguous dipoles, namely,

xa1
= xb1 . (2.8)

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
2

Although it is not legitimate to extrapolate the result (2.6) to the case xab → 0, it does

suggest that the correlations would become even larger for such ‘BK configurations’. (The

numerical evaluation of this case is presented in section 3.2.) In this section we attempt

at an analytical evaluation of n(2) for xa1
= xb1 in certain limits and discuss the behavior

of the ratio R defined in (1.5). The result will be confronted with numerical Monte Carlo

simulations in the next section.

2.2 Calculation of n(2) for contiguous dipoles

The last line of (2.1) is a known integral whose overall structure is fixed by conformal

symmetry. After performing this integral, the last two lines of (2.1) become

I ≡f(γ, γa, γb)

∫

d2xαd
2xβ

(

xa0c

xa0αxcα

)2γa
(

xb0c

xb0βxcβ

)2γb 1

x
2(1+γ−γa−γb)
αβ

×

∫

d2xγ

(

x01

x0γx1γ

)2γ 1

x
2(1+γa−γb−γ)
βγ

1

x
2(1+γb−γa−γ)
γα

, (2.9)

where the function f -the ‘triple Pomeron vertex’– can be found in [25, 26], and we have

already set xa1
= xb1 ≡ xc.

To make progress we assume that γa = γb, which is a good approximation when the

configuration of the two child dipoles is more or less symmetric. (The saddle points γa and

γb depend only logarithmically on dipole sizes.) Then the xγ integral can be done [27]

1

x
2(1−γ)
αβ

∫

d2xγ

(

x01

x0γx1γ

)2γ ( xαβ

xαγxβγ

)2(1−γ)

=
1

x
2(1−γ)
αβ

(

cγ |ρ|
2γ |F (γ, γ, 2γ, ρ)|2

+ (γ ↔ 1 − γ)

)

,(2.10)

where F is the hypergeometric function,

cγ = π2−4iν−1 Γ(1
2 + iν)Γ(−iν)

Γ(1
2 − iν)Γ(1 + iν)

, (2.11)

and

ρ ≡
z01zαβ

z0αz1β
, (2.12)

is the anharmonic ratio of the four points (x0, x1, xα, xβ) (z is the complex coordinate

representation of x), see figure 2. The remaining integrals are difficult to perform in full

generality. As in [13], we shall restrict ourselves to two limiting cases x01 → 0 (small

parents) and x01 → ∞ (large parents). In both limits, |ρ| ≪ 1, so we may approximate

F (. . . , ρ) ≈ 1. The two terms in (2.10) give equal contributions due to the symmetry

γ → 1 − γ. Taking this into account, we can write

I = 2cγf(γ, γa, γa)

∫

d2xαd
2xβ

x4
αβ

(

xa0cxαβ

xa0αxcβ

)2γa
(

xb0cxαβ

xb0βxcα

)2γa
(

x01xαβ

x0αx1β

)2γ

. (2.13)
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Figure 2: Equation (2.1) after integrating over x1, x2, x3 and xγ .

The integrand is a product of anharmonic ratios weighted by the conformally invariant

measure d2xαd
2xβ/x

4
αβ , so it is invariant under conformal transformations of the external

points. However, since there are five of them (x0, x1, xa0
, xb0 and xc), conformal symmetry

is not strong enough to constrain the solution, and our assumption x01 → ∞ or x01 → 0

will be crucial in the following.

2.2.1 Large parents

Suppose the parent dipole is large and the points xa0,b0,c are all located near the center of

the parent dipole as illustrated in figure 3(a). This may be regarded as a situation relevant

to DIS on a hadron at high photon virtuality. Without loss of generality, we can set xc = 0.

The integrand vanishes as xα,β → ∞ very fast, so that a finite region of xα,β near the origin

is important. Therefore we may approximate

x01

x0αx1β
→

4

x01
. (2.14)

Under this assumption, (2.13) takes the form

I = 2cγf(γ, γa, γa)

(

4

x01

)2γ ∫ d2xαd
2xβ

x4−2γ−4γa

αβ

(

xa0

xa0αxβ

)2γa
(

xb0

xb0βxα

)2γa

. (2.15)

For simplicity, we assume that the two dipoles have the same size: xa0c = xb0c = r. (The

region xa0c ≫ xb0c or xa0c ≪ xb0c gives a subleading contribution in the BFKL or the BK

equation, see section 2.3.) Writing za0
= reiθa and zb0 = reiθb and rescaling xα,β → rxα,β

– 7 –
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Figure 3: Graphical representation of the ’BK configurations’, (a) for the large parent, small

impact parameter case, and (b) for the small parent, large impact parameter case.

we get

I = 2cγf(γ, γa, γa)

(

4r

x01

)2γ ∫ d2xαd
2xβ

x4−2γ−4γa

αβ

(

1

|eiθa − zα|xβ

)2γa
(

1

|eiθb − zβ|xα

)2γa

≡ 2cγf(γ, γa, γa)

(

4r

x01

)2γ

g(θ) , (2.16)

where θ = θa − θb is the relative angle between the two child dipoles. We have not been

able to determine the function g(θ) for θ 6= 0 in a closed form (g(0) is a known integral in

the conformal field theory literature [28 – 30]). But since this function has no singularity

and depends only on the angle, it will not affect the evaluation of the saddle point below.

Neglecting this angular dependence and other prefactors, we can estimate the two

dipole scattering amplitude as

T (2)(x01, xa0c, xb0c) ∼ α2
sx

2
a0cx

2
b0cn

(2)(x01, xa0c, xb0c)

∼ α2
s

∫ Y

0
dy

∫

dγdγadγb

(

r

x01

)2γ

eχ(γ)y+(χ(γa)+χ(γb))(Y −y) . (2.17)

After performing the y integral, we get the two contributions

∫

dγdγadγb

(

r

x01

)2γ eχ(γ)Y

χ(γ) − χ(γa) − χ(γb)
, (2.18)

and

∫

dγdγadγb

(

r

x01

)2γ e(χ(γa)+χ(γb))Y

χ(γa) + χ(γb) − χ(γ)
. (2.19)
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The saddle point for the γa and γb integrals in (2.19) is simply the BFKL one γa = γb = 1/2,

leading to

∫

dγ

(

r

x01

)2γ e2χ(1/2)Y

2χ(1/2) − χ(γ)
∼

(

r

x01

)2γ

e2χ(1/2)Y , (2.20)

where γ solves

χ(γ) = 2χ

(

1

2

)

, γ ≈ 0.82 . (2.21)

For the contribution (2.18) we can use the saddle point for the γ integral,

χ′(γs)Y = ln
x2

01

r2
, (2.22)

and the leading rapidity behavior of this contribution is then given by

(

r

x01

)2γs

eχ(γs)Y . (2.23)

As we discuss in section 2.3, it holds that 2χ(1/2) > χ(γs), i.e., γs < 0.82 for all config-

urations we are interested in. (In the limit Y → ∞, γs → 1/2.) The contribution which

dominates is thus given by (2.20), and we therefore have

T (2) ∼ α2
s

(

r

x01

)2γ

e2χ(1/2)Y . (2.24)

On the other hand, the single dipole scattering amplitude is given by

T (x01, r) ∼ αs

(

r

x01

)2γ̃

eχ(γ̃)Y , (2.25)

where γ̃ is the solution to

χ′(γ̃)Y = ln
x2

01

r2
. (2.26)

Taking the ratio, we arrive at

R ≡
T (2)

(T )2
∼
(x01

r

)2(2γ̃−γ)
e2(χ(1/2)−χ(γ̃))Y . (2.27)

Since 2γ̃ > 1 > γ, the first factor is larger than 1 and predicts that the correlation

increases as the asymmetry becomes larger x01 ≫ r. Since χ(γ̃) > χ(1/2), the second,

exponential factor tends to decrease the correlation at high values of rapidity. Comparing

this with (2.7), we infer that R monotonously increases and eventually saturates to the

expression (2.27) as xab → 0.

– 9 –
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2.2.2 Small parents

Another tractable example is the limit of a small parent dipole x01 → 0. In this case

we may approximate x1β ≈ x0β, after which the point x1 drops out from the integral.

Rewriting

I = 2cγf(γ, γa, γa)

(

x01xa0b0

x0a0
x0b0

)2γ ∫ d2xαd
2xβ

x4
αβ

(

xa0cxb0cx
2
αβ

xa0αxcαxb0βxcβ

)2γa (

xαβx0a0
x0b0

x0αx0βxa0b0

)2γ

(2.28)

we see that, apart from the prefactor, the integrand is conformally invariant, so it can be

written as

I = 2cγf(γ, γa, γa)

(

x01xa0b0

x0a0
x0b0

)2γ

h (η, η∗) , (2.29)

where η is an anharmonic ratio

η ≡
za00zb0c

za0czb00
. (2.30)

In order to evaluate the function h, one can set, using a conformal transformation, x0 = ∞,

xc = 0, xa0
= 1

h(zb0 , z̄b0) =
x2γa

b0

(1 − xb0)
2γ

∫

d2xαd
2xβ(xα − xβ)4γa+2γ−4(1 − xα)−2γa

×(xb0 − xβ)−2γax−2γa

α x−2γa

β , (2.31)

and therefore,

h(η, η̄) =
|η|2γa

|1 − η|2γ

∫

d2xαd
2xβ(xα − xβ)4γa+2γ−4(1 − xα)−2γa |η − zβ|

−2γax−2γa

α x−2γa

β

=

(

x01xa0c

x0a0
x0c

)2γ (xb0cxa00

xa0cx0b0

)2γa
∫

d2xαd
2xβ · · · . (2.32)

Remarkably, the same integral as in (2.15) appears, as a consequence of the symmetry

between the limits x01 → ∞ and x01 → 0 found in [13]. First consider the case of large

impact parameters b ≡ |x0a0
| ≈ |x0b0 | ≈ |x0c| ≫ r (see, figure 3(b) and related calculations

in [13, 31]). Then η is approximately a phase η ≈ eiθ where θ is the relative angle as before.

We find3

I ≈ 2cγf(γ, γa, γa)
(x01r

b2

)2γ
g(θ) , (2.34)

3In fact, this result can be reached from (2.16) via a conformal transformation thanks to the conformal

invariance of the original integral (2.13). Consider a SL(2,C) transformation

z → z′ =
−1

z − 1/b
. (2.33)

Under this, one has x01 → x′

01 ≈ x01/x0x1 ≈ 4/x01, xc = 0 → x′

c = b, xa0
= r → x′

a0
= b/(1 − br), and

xa0c = r → r′ ≈ b2r. Therefore, 4r/x01 = x′

01r
′/b2 as expected. Note finally that by definition a conformal

transformation does not change the angle θ.
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and

T (2) ∼ α2
s

∫ Y

0
dy

∫

dγdγadγb

(x01r

b2

)2γ
eχ(γ)y+(χ(γa)+χ(γb))(Y −y) . (2.35)

Again, the saddle points are given by γa = γb = 1/2, and we have the pole at χ(γ) =

2χ(1/2). On the other hand, the single scattering amplitude at large impact parameter is

T (x01, r, b) ∼ αs

(x01r

b2

)2γ̃
eχ(γ̃)Y , (2.36)

where γ̃ is the solution to

χ′(γ̃)Y = ln
b4

x2
01r

2
. (2.37)

Taking the ratio, we find

R =
T (2)

(T )2
∼

(

b2

x01r

)2(2γ̃−γ)

e2(χ(1/2)−χ(γ̃))Y . (2.38)

So in this case the correlation R decreases as either x01 or r (or both) is increased (keeping

x01, r ≪ b).

In order to exhibit a symmetry with respect to the large dipole case, let us look at the

case of small impact parameters, typically, b ∼ r ≫ x01. We find

I ∼
(x01

r

)2γ
, (2.39)

while

T (x01, r, b) ∼ αs

(x01

r

)2γ̃
eχ(γ̃)Y , (2.40)

with γ determined from

χ′(γ̃)Y = ln
r2

x2
01

, (2.41)

so that

R ∼

(

r

x01

)2(2γ̃−γ)

e2(χ(1/2)−χ(γ̃))Y . (2.42)

Compare with (2.27). As x01 increases, while keeping x01 ≪ r, the correlation decreases.

From the limiting behaviors, (2.27) (x01 ≫ r) and (2.42) (x01 ≪ r), we see that R is

enhanced when the asymmetry (x01 vs. r) is large, and it presumably takes a minimum

value around x01 ∼ r.
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2.3 Estimates and comments

Regarding the rapidity dependence, we note that γ̃ → 1/2 as Y → ∞. Thus for large

Y , the coefficient multiplying Y in the exponent in (2.27) and (2.42) tends to zero. For

a fixed Y , this coefficient again tends to zero when x01 → r, as can be seen from (2.26)

and (2.41). Therefore the results (2.27) and (2.42) predict that the correlation R decreases

faster with Y when x01/r ≫ 1 and x01/r ≪ 1, while if we extrapolate our results towards

the symmetric limit x01 ≈ r, we see that R is almost constant in Y .

From (2.26) we can guess that γ̃ is quite close to 1/2. Let us therefore set γ̃ = 1/2 + ǫ

and expand the BFKL eigenfunction to linear order in ǫ. One then finds that

ǫ ≈ −
1

ψ′′(1/2)ᾱsY
ln
x01

r
=

1

14ζ(3)ᾱsY
ln
x01

r
, (2.43)

where ζ(3) ≈ 1.2. If x01/r = 2 we then find, for ᾱs = 0.2, ǫ ≈ 0.21/Y , and thus for Y = 8

we have ǫ ≈ 0.03, while for Y = 12 we find ǫ ≈ 0.02. For 2(2γ̃ − γ) we then find the

values 0.46 and 0.43 for Y = 8 and 12 respectively. If instead x01/r = 40 we find ǫ ≈ 0.14,

2(2γ̃ − γ) ≈ 0.91 and ǫ ≈ 0.09, 2(2γ̃ − γ) ≈ 0.73 for Y = 8 and 12 respectively. For

this values of γ̃ we also note that the exponent multiplying Y in (2.27) is quite small, for

γ̃ = 0.64 it is 0.14 while for γ̃ = 0.59 it is 0.06 (all these estimates are valid for ᾱs = 0.2).

Thus if, for a fixed Y , we try to fit R as a function of x01/r using a single effective

power, ω, we would expect this fit to give a too strong increase close to the minimum,

x01/r ∼ 1, whereas it should give a too slow increase further away from the minimum. As

2(2γ̃ − γ) varies stronger for smaller Y , we would expect the fit to work better for higher

Y . We would also expect ω to be larger for smaller Y .

In the next section we will see that these analytical estimates are all in quite good

agreement with the numerical results. In particular, the numerical analysis will confirm

that the minimum of R (for zero impact parameter) occurs at x01 ≈ r. Moreover, the

estimates for γ̃ given above agree very well with the numerical results, and also the Y

dependence turns out to be correct.

Before moving on to the numerical analysis, we would like to address one more point.

So far we have been able to make analytic estimates only for specific configurations. In

particular, we assumed that the dipoles xa0c and xb0c are more or less equal in size. In

going from (1.2) to (1.1), however, the question is whether the replacement

∫

d2zM(x, y, z) · T
(2)
Y (x, z; z, y) →

∫

d2zM(x, y, z) · TY (x, z)TY (z, y) , (2.44)

is valid. (We have here returned to the notation used in the introduction using x, y and z.)

What we have shown above is that T (2)(x, z; z, y) ≫ T (x, z)T (z, y) for some specific regions

of z, and also for specific relations between (x, y) and the target, but this is not sufficient

to see the integrated effect of the correlation. Although one can use the MC code to do the

integration over z, this can be quite time consuming. Leaving the numerical integration

for future work, we here crudely identify the configurations which dominate the integral

in (1.1). Consider the large parent case where |x − y| ≪ x01 and assume that |x − y| is

smaller than the saturation length Q−1
s . This means that we may set T (x, y) = (x−y)2Q2

s.
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(We could also introduce an anomalous dimension γ 6= 1 but this is not essential.) We then

divide the integral into three regions:

• Region A: |x− z|, |y − z| . |x− y| .

• Region B: |x− y| . |x− z| ≈ |z − y| . Q−1
s .

• Region C: Q−1
s . |x− z| ≈ |z − y| .

In region A we have

∫

A
d2z

(x− y)2

(x− z)2(y − z)2
×

×

{

(x− z)2Q2
s + (z − y)2Q2

s − (x− y)2Q2
s − (x− z)2Q2

s · (x− y)2Q2
s

}

∼ (x− y)2Q2
s . (2.45)

(Note that there is no logarithmic singularity at either z = x or z = y.) In region B we

instead have

∫

B
d2z

(x− y)2

(x− z)4

{

−(x− y)2Q2
s + 2(x− z)2Q2

s − (x− z)4Q4
s

}

≈ (x− y)2
∫

B
d2z

1

(x− z)4
2(x− z)2Q2

s

∼ (x− y)2Q2
s ln

1

(x− y)2Q2
s

, (2.46)

while in region C we have

∫

C
d2z

(x− y)2

z4

{

−(x− y)2Q2
s + 1

}

∼ (x− y)2Q2
s , (2.47)

where the integral is dominated by the lower limit |x − z| ∼ 1/Qs. Thus for a small

projectile which has not yet reached saturation |x− y| ≪ Q−1
s , the dominant contribution

comes from region B where we indeed have |x − z| ≈ |z − y|. As |x − y| → 1/Qs, region

B shrinks, and the dominant region is simply |x − z| ∼ |z − y| ∼ |x − y|. Therefore, we

expect that the configurations we are using are relevant, and the large correlation found

there should survive after integrating over z in the evolution equation.

3. Numerical Approach

3.1 Outline of the approach

In this section we will perform a numerical analysis to compute the quantities T (2) and

(T )2. This can be done rather easily in a Monte Carlo implementation of the dipole model,

and we will here use the C++ code developed in [18]. The calculation we will perform is

straightforward, no matter which configuration we have. Recall that the definitions of T
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and T (2) are

TY (x, y) =

∫

d2u d2v A0(x, y|u, v)nY (u, v) , (3.1)

T
(2)
Y (x1, y1;x2, y2) =

∫

d2u1 d
2v1 d

2u2 d
2v2A0(x1, y1|u1, v1) ×

×A0(x2, y2|u2, v2)n
(2)
Y (u1, v1;u2, v2)

+

∫

d2u d2v A0(x1, y1|u, v)A0(x2, y2|u, v)nY (u, v) , (3.2)

where A0 is the elementary dipole-dipole scattering amplitude. (The second term on the

right hand side of (3.1) represents scattering of two dipoles off the same dipole in the

target.) Starting from any initial dipole distribution, the MC code evolves the initial state

up to a given value of Y , after which one can calculate all possible scatterings between the

dipoles. The Monte Carlo estimate of equation (3.1) is simply given by

T
(2)
MC(x1, y1;x2, y2) =

1

Nev

Nev
∑

n=1

∑

i,j∈Γn

A0(x1, y1|ui, vi) · A0(x2, y2|uj, vj) , (3.3)

where Γn is the configuration of the evolved target for the nth event. Writing
∑

i,j =
∑

i6=j +
∑

i we see that (3.3) contains both contributions in (3.1). In writing this formula

we only evolved the target but we can obviously do the computation in any given frame.

Similarly the product T (x1, y1) · T (x2, y2) is calcuated as

TMC(x1, y1) · TMC(x2, y2) =
1

Nev

Nev
∑

n=1

∑

i∈Γn

A0(x1, y1|ui, vi) ·
1

Nev

Nev
∑

n=1

∑

i∈Γn

A0(x2, y2|ui, vi) .

(3.4)

In the next section we will start by checking the predictions from [13] as stated in

equations (1.4) and (2.7). As in the analytical approach we consider a target which initially

consists of a single dipole (x0, x1) (for the numerical calculation we could start from any

configuration if we so wish) For the configurations in [13], the phenomenologically more

relevant configuration is the one in which the target x01 is much larger than the projectile

dipoles. We fix the projectile dipoles to have the same size, r = xa0a1
= xb0b1 (for the above

formulas this means we have x1 = xa0
, y1 = xa1

, x2 = xb0, y2 = xb1), while the distance

between them, xab, will be varied.

For the BK configurations, we have x2 = y1 = xc, and again we fix the two projectile

dipoles to have the same size, r = |xa0
− xc| = |xc − xb0 |. The target dipole (x0, x1) is

placed at zero impact parameter, as in figure 3 (a), while its orientation is chosen randomly

for each event. We will always keep xa0
, xb0 and xc fixed while we vary x01 and the impact

parameter.

One technical point is that one has to introduce a cutoff, ρ, for the minimal size of

dipoles generated during the evolution since the dipole kernel M(x, y, z) diverges at z = x

and z = y. Such a cutoff explicitly breaks conformal symmetry, and one should therefore

ideally choose a cutoff which is much smaller than the relevant scales (the initial dipole

sizes) involved in the process. On the other hand, simulations with too small values of ρ
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Figure 4: The numerical results for the configurations described in (1.4) at Y = 10, and for target

of size x01 = 20 r (left plot) and x01 = 30 r (right plot). The MC results are shown as squares while

the power-like fits to the results are shown as dashed lines.

are very time-consuming. If one is studying symmetric collisions r ∼ x01, then the choice

ρ = 0.01r = 0.01x01 is good enough. Choosing an even smaller ρ in this case is not useful

since one is then wasting a lot of time to generate many very small dipoles which do not

interact and do not contribute much to the scattering amplitude. However, here we wish to

study the correlation as we vary x01, and then the choice of ρ is more subtle. For example,

for a very asymmetric collision, say x01 ∼ 100r, ρ has to be much smaller than 0.01x01 so

that we do not suppress important dipoles with size of order r. Besides, in the absence of

saturation effects, smallness of ρ is also required for the frame-independence of T (2), hence

that of R. As a compromise between these requirements (reducing simulation time and

ensuring frame-independence) we shall choose ρ(x01) = 0.05 r throughout. With this choice

we confirmed that the results presented in what follows are reasonably frame-independent

even up to the center-of-mass frame.

3.2 Results

As mentioned above we start by checking the results from [13]. The target will be fixed at

the origin, with random orientation, and the projectile dipoles are placed symmetrically

along the horizontal axis, one on the positive axis and the other on the negative axis, with

random orientations. We choose ᾱs = 0.2 throughout, except in the running coupling case

to be presented later.

The results for this configuration are shown in figure 4. Here we choose x01 = 20 r in

the left plot, and x01 = 30 r in the right plot keeping x01 > xab. The former case would

in DIS correspond to a virtuality of Q2 ∼ 60 GeV2. In both cases we also show fits of the

form R = α/(xab +β)γ . We thus confirm the power-like behavior in (1.4), and also see that

R converges to a finite value as xab → 0 in agreement with the analytical prediction (2.27).

For the left plot the fit gives the values β = 0.09 and γ = 0.70 while for the right plot we

get β = 0.09 and γ = 0.72.

Next we turn to the BK configuration described in the previous section. In figure 5,

we plot R as a function of x01/r for Y = 6, 8 and 10, at zero impact parameter. We can see

a behavior of R consistent with the analytical formulas, equations (2.27) and (2.42). The
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Figure 5: The numerical results for R at Y = 6 (upper left plot), Y = 8 (upper right plot) and

Y = 10 (bottom plot) at zero impact parameter.

minimum of R indeed occurs at x01 ≈ r with the minimal value R ≈ 1.5. For asymmetric

configurations, R can easily reach values of order 10. Moreover, the powers extracted from

figure 5 agree with the expectations from equations (2.21) and (2.26). For Y = 6, a fit of

the form (x01/r)
ω gives the values ω = 0.55 in the region x01/r = 1 → 10, ω = 0.93 in

the region x01/r = 6 → 40, and ω = 1.22 in the region x01/r = 40 → 200. If we instead

calculate the power by calculating γ̃ using equation (2.43) at the points x01/r = 5, 20 and

120 representing the three regions above, we find the respective values 0.68, 0.96 and 1.32,

in very good agreement with the numerical results. Similarly, for Y = 8 we find the values

ω = 0.52 and 0.76 from fits in the first two regions above. This can be compared to the

analytical result which gives ω = 0.60 and 0.80.

From our analysis in the previous section we know that R decreases as Y increases,

and the rate of decrease is larger for asymmetric scattering. This tendency can be clearly

observed, though the ratio R doggedly stays & 1.5. In the current simulation we cannot go

to larger values of Y because the single dipole amplitude T for x01 ∼ r reaches order unity

around Y = 10. Therefore, in the entire domain of Y values where our approach makes

sense, the mean field approximation R = 1 is nowhere valid even in central collisions. Since

this persists up to the onset of the strong scattering regime T ∼ O(1), it is unlikely that

saturation effects immediately wash out the correlation. Rather, one has to carefully study

the effect of correlations when solving nonlinear equations.

Another, perhaps more striking consequence of the correlation emerging from our anal-
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Figure 6: The numerical results for R at nonzero impact parameter b 6= 0, Y = 10 and x01 = 10 r

(left plot) and x01 = 20 r (right plot).

ysis is that it makes the nonlinear term T (2) comparable to T even when T ≪ 1. For exam-

ple, we have T = 0.023 for x01 = 40 r at Y = 8, and in this case we see from figure 5 that

R = 10. This means that T (2) = 0.0056, and thus T (2)/T = 0.24, so T (2) is not completely

negligible as compared with T . For the more symmetric case x01 = 6r at Y = 10 we have

T = 0.39 while T (2) = 0.32 and R = 2.2, see again figure 5. For x01 = 40 r and Y = 10 we

instead have T = 0.059, while R = 6.9 and therefore T (2)/T = 0.41. Taken at face value,

these estimates suggests that one might have to include the nonlinear effects in the evolu-

tion already in the dilute regime where T ≪ 1. We did not include such a back-reaction

into our linear dipole evolution, and in this regard our analysis is not complete. This point

certainly deserves further study.

So far we have studied only configurations with zero impact parameter b = 0. At finite

impact parameter the correlation becomes larger as suggested by (2.38). Of course if we

think of x01 as representing the proton radius then one should be careful in interpreting

results for b ≫ x01 where confinement effects are certainly important. As a check of the

analytical prediction, and also for the sake of demonstration, we nevertheless present some

results when b > x01. Figure 6 shows the b dependence of R for x01/r = 10 and x01/r = 20.

We see that R is almost constant as long as b is smaller than x01 and that it grows rapidly

when b & x01.

Numerical simulation with a running coupling

One of the non-leading effects which we can easily incorporate into the numerical simulation

is the running coupling as has already been done in [18 – 20]. Although in this paper we

mainly concentrate ourselves on the fixed coupling case, we would here like to briefly

mention some of the preliminary results obtained when the running coupling is used.

Technically, the inclusion of the running coupling is completely straightforward and

we shall use the one-loop expression for αs,

αs(Q
2) =

4π

(11
3 Nc −

2
3nf ) ln (Q2/Λ2

QCD)
(3.5)
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Figure 7: The crosses are the numerical estimates of R obtained using a running coupling at

Y = 6, and for b = 0 (left plot) and b = 5 r (right plot). The squares are the corresponding fixed

coupling results.

where we fix ΛQCD = 0.22GeV. The running coupling enters both in the dipole evolution

(as ᾱs) and in the individual dipole-dipole scatterings (as α2
s). We will set Nc = 3 and

nf = 3 as in [19, 20].

To avoid the IR singularity we shall freeze the coupling below a minimum scale Qmin

corresponding to a maximum dipole size rmax = 1/Qmin. As in [20], we choose rmax =

3.5GeV−1. In [20], αs was evaluated at the scale 1/Q = min(r, r1, r2) for the splitting

r → r1, r2, and this choice roughly follows from next-to-leading log (NLL) studies of the

dipole evolution [32, 33]. [See section VII of [34] for a compact discussion.] Thus we

continue to use this scale in the evolution of the dipole cascade. For the dipole-dipole

interaction the correct choice of the scale is more subtle, and we here use the option

described in [20].

In practice, simulations with the running coupling are quite time-consuming, and we

have therefore not been able to check as many configurations as in the fixed coupling

case. In figure 7 we show the results obtained at Y = 6 both at zero (left plot) and

nonzero (right plot) impact parameter, together with the fixed coupling results. We see

that R is somewhat reduced, but its minimum value is still around 1.5. We also see that

the qualitative behavior of R does not change, the minimum again occurs when x01 ≈ r

although it is of course difficult to determine the exact behavior of R since we do not have

enough data points. At Y = 8 for b = 0, we find the value R = 1.5 at x01 = 2 r, while in

the fixed coupling case we found R = 1.6. For b = 5 r, R reduces from 11.6 in the fixed

coupling case to 9.4 in the running coupling case for the same configuration.

4. Conclusions

In this paper we have studied both analytically and numerically the correlations induced

by the leading order BFKL dynamics in the high energy evolution of a dilute system (such

as a proton). Our main analytical results are given in equations (2.27), (2.38) and (2.42).

All these results indicate that one should expect power-like correlations which lead to a

strong violation of the factorization T (2) ≈ T · T . The analytical estimates have been
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demonstrated to be qualitatively correct by a numerical analysis with which we have also

been able to quantitatively study the behavior of the ratio R = T (2)/T 2. We have found

that R is always larger than ∼ 1.5 and it can easily reach ∼ O(10) when the asymmetry is

large.

Physical consequences of the correlation remain to be explored. The first and obvious

intuition is that it opens an intriguing possibility of the ‘grey disc’ limit in which a scattering

amplitude saturates to a value less than 1.4

T →
1

R
< 1 . (4.1)

However, since R is not a constant, and the nonlinear equations involve an integration over

the transverse plane with a nontrivial weight, a more detailed analysis would be required

in order to draw any conclusions.

Another interesting problem is the interplay with the gluon number fluctuation which

has attracted considerable attention lately (see [36] and references therein), but which

has so far mostly been studied in simple toy models where the transverse dimensions are

suppressed. Though it typically requires unrealistically large energies to see the impact of

the gluon number fluctuation on the nonlinear evolution of large nuclei, this is probably

not the case for a dilute target. The BFKL evolution generates a very strong number

fluctuation as well as the transverse correlation in the dilute regime, and they can both

affect the subsequent nonlinear evolution in significant ways.

There is plenty of room for improvements in the Monte Carlo simulation itself. In order

to make a quantitative prediction for realistic experiments, one should include various NLL

corrections and saturation effects into the target evolution. They have been incorporated

in the dipole model in [18 – 20]. Among them, we have in this paper included some results

with the running coupling effect. Since our simulations have been limited in size, it is

difficult to determine the exact behavior of R. What we have clearly observed, however, is

that R is somewhat reduced from the fixed coupling case, but is still large. This suggests

that the large correlation may not be totally attributed to conformal symmetry of the

leading order BFKL, but rather is a robust feature of the QCD evolution in the linear

regime.

As mentioned in the introduction we would expect even larger correlations in the

multiple scattering amplitudes T (p) (p ≥ 3) which enter the Balitsky hierarchy. In the

dipole model, these amplitudes are directly related to the corresponding multiple dipole

distributions n(p) [23, 24], but analytical results for them are scarce [37]. The numerical

evaluation of these amplitudes is straightforward, although the calculation of T (p) for large

p would be time-consuming due to the need of good statistics.
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[19] E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-Nc limit,

JHEP 01 (2007) 012 [hep-ph/0610157].
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